The Future of Space Exploration Mining in Outer Space
Mining in Space -- AIAA and New York Academy of Sciences
On December 10, 1986 the Greater New York Section of the American Institute of Aeronautics and Astronautics (AIAA) and the engineering section of the New York Academy of Sciences jointly presented a program on mining the planets. Speakers were Greg Maryniak of the Space Studies Institute (SSI) and Dr. Carl Peterson of the Mining and Excavation Research Institute of M.I.T.
Maryniak spoke first and began by commenting that the quintessential predicament of space flight is that everything launched from Earth must be accelerated to orbital velocity. Related to this is that the traditional way to create things in space has been to manufacture them on Earth and then launch them into orbit aboard large rockets. The difficulty with this approach is the huge cost-per-pound of boosting anything out of this planet's gravity well. Furthermore, Maryniak noted, since (at least in the near to medium term) the space program must depend upon the government for most of its funding, for this economic drawback necessarily translates into a political problem.
Maryniak continued by noting that the early settlers in North America did not attempt to transport across the Atlantic everything then needed to sustain them in the New World. Rather they brought their tools with them and constructed their habitats from local materials. Hence, he suggested that the solution to the dilemma to which he referred required not so much a shift in technology as a shift in thinking. Space, he argued, should be considered not as a vacuum, totally devoid of everything. Rather, it should be regarded as an ocean, that is, a hostile environment but one having resources. Among the resources of space, he suggested, are readily available solar power and potential surface mines on the Moon and later other celestial bodies as well.
The Moon, Maryniak stated, contains many useful materials. Moreover, it is twenty-two times easier to accelerate a payload to lunar escape velocity than it is to accelerate the identical mass out of the EarthUs gravity well. As a practical matter the advantage in terms of the energy required is even greater because of the absence of a lunar atmosphere. Among other things this permits the use of devices such as electromagnetic accelerators (mass drivers) to launch payloads from the MoonUs surface.
Even raw Lunar soil is useful as shielding for space stations and other space habitats. At present, he noted,...